Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation

نویسندگان

  • Rubén García-Martín
  • Vasileia I. Alexaki
  • Nan Qin
  • María F. Rubín de Celis
  • Matina Economopoulou
  • Athanasios Ziogas
  • Bettina Gercken
  • Klara Kotlabova
  • Julia Phieler
  • Monika Ehrhart-Bornstein
  • Stefan R. Bornstein
  • Graeme Eisenhofer
  • Georg Breier
  • Matthias Blüher
  • Jochen Hampe
  • Ali El-Armouche
  • Antonios Chatzigeorgiou
  • Kyoung-Jin Chung
  • Triantafyllos Chavakis
چکیده

Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of obesity and insulin resistance by hypoxia-inducible factors

In obesity, dysregulated metabolism and aberrant expansion of adipose tissue lead to the development of tissue hypoxia that plays an important role in contributing to obesity-associated metabolic disorders. Recent studies utilizing adipocyte-specific hypoxia-inducible factor-α (HIF-α) gain- or loss-of-function animal models highlight the pivotal involvement of hypoxic responses in the pathogene...

متن کامل

The Hypoxia-Inducible Factor Pathway in Adipocytes: The Role of HIF-2 in Adipose Inflammation and Hypertrophic Cardiomyopathy

Under obese conditions, adipose tissue can become oxygen-deficient or hypoxic. Extensive work has been done using various diet-induced obesity models to demonstrate an important role of hypoxia-induced signaling in adipose tissue and its impact on adipose functions related to adipogenesis, insulin sensitivity, and inflammation. We have recently identified a new mechanism connecting activation o...

متن کامل

Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure

We recently reported that local overexpression of VEGF-A in white adipose tissue (WAT) protects against diet-induced obesity and metabolic dysfunction. The observation that VEGF-A induces a "brown adipose tissue (BAT)-like" phenotype in WAT prompted us to further explore the direct function of VEGF-A in BAT. We utilized a doxycycline (Dox)-inducible, brown adipocyte-specific VEGF-A transgenic o...

متن کامل

Macrophage HIF-2α ameliorates adipose tissue inflammation and insulin resistance in obesity.

In obesity, adipose tissue macrophages (ATMs) play a key role in mediating proinflammatory responses in the adipose tissue, which are associated with obesity-related metabolic complications. Recently, adipose tissue hypoxia has been implicated in the regulation of ATMs in obesity. However, the role of hypoxia-inducible factor (HIF)-2α, one of the major transcription factors induced by hypoxia, ...

متن کامل

Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance☆

OBJECTIVE Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2016